Chemistry 11
 Block 3
 Science Fair 2018

Science Fair Groups

LLook through all of these presentations and posters
Choose 2 groups you think should represent our class at the Science Fair

Group 1: Which Fruit Contains the Most Vitamin C? Members: Eve, Ella, and Jo

Introduction

Vitamin C is one of the most common nutrients. It helps protect against cancens, heart disease, stress, it is part of the cellular chemistry that provides energy. As a teenager, we need enough amount of vitamin C daily to protect us from disease. Due to the importance of vitamin C for our health, as fruits are a main source for us to absorb vitamin C , we want to see which fruit is a better source of vitamin C .

Hypothesis

Lemon contains the most amount of vitamin C because it tastes sour.

Materials

$250 \mathrm{~mL} \times 0.02 \mathrm{M}$ Polanslum Permanganate 5 mL injecter 5 mLL injector
2 vitamin C pill 15 ziplock bagn
16 measuring cylinden
Grapes
1 pemele
1 pomelo
1 peas
1 pomegranate

Procedure

1. Preparing 5 types of fruits and cut them into pieces 2. Putting each type of fruits into different ziplock bags.
2. Crushing the fruits into juice
3. Dropping 5 mL . Potassium Permanganate solution into measuring cylinders by buret.
4. Pouring each type of juice from ziplock bag to another graduated cylinders.
5. Pouring each type of juice to the Potassium

Permanganate solutions.
7. Repeating each steps 2 more times
8. Observing the color changes of the Potassium Permanganate solutions.
9. Collecting the data.

Which Fruit Contains the Most Amount of Vitamin C? Designed by Eve Yu, Jo Shen and Ella Han

Results and Discussion

Due to limitations in the amount of chemicals available. Both the amount of potassium permanganate and the amount were limited to 5 ml each, so we could observe the changes more easily. In addition, if we use the method of itration, which is only rationing the amount of fuice, and dropping potassium permanganate into it until the oolution is completely faded, the experiment will be time consuming and expensive because some fruits like pears have only little vitamin c , and we tent the pomelo juice, it may only use a few drops, but for pear, it may use over fifty milliliters, so that it will be hard for us to measure in that situation using our equipment.
 and putassium permanganate has the lightest color, and that Illustrates the result of our experiment is that pomelo has the must vitamin C. Therefore, the peas, which has the darkest color has the icath content of vilamina

 vihumin C the pule purpie disppeask Boerd ong our remite we

found the reation between Folasium Fermanganste and vitumin | Ciss |
| :--- |
| tound |

$\mathrm{KMnO}_{2}+\mathrm{HCN}-\mathrm{O}_{-}-\mathrm{KCHAO}_{2}+\mathrm{H} *+\mathrm{MnO}_{-}$ Our hyputhesio is that compurieng with other fruits, lemon will contrin the moot Vitamins C. Nevertheless, based en the aperimest and the analywik, it is proven that pomedo has mos
vitaniss C instead of lemoen. The reason why we arr wiong io
 most addity is the fruil with the mose vitumin C .
Possible Errors and Solutions

We need*

Group 2: Cabbage or pH Indicator?

Members: Cindy, Levi, Kate

Procedure*

1. Ger some pieces of cat
2. Put the cabberage juice.
3. Put different materials into beakers and use pH indicator
4. pull out the the paper value put tithe

* pour cabbage juice into each beaker.

5. Observe the color in the cups.
. Compare the color of cabbage juice as well os the pH
6. Compare the
indicator paper.
importance of measurement accuracy. Some of the a advice
things together as well os testing them with the same indicator
3.WHAT EXPERIMENTS WOULD YOU WORK ON NEXT BASED?
$-D A T A: D \approx$

5176.44106 1.EXPLAIN WHY KEY INFORMATION IS
IMPORTANT Based on our data, the color of the cabbage juice indicates
the pH value of materials. It can be seen that cabbage juice changes the color for the acid substances to red while it also
turns the color to buvergreen when the material is alkali) is quite
sion incant because we can infer the actual pH l value of different
 materials win our juice which means me cabbage juice can
effectively distinguish materials. Besides, we control the amount
of each independent variables and keep them the some which
ensures our measurement to be more accurate.

- - - - - - - -

2. COMPARE YOUR RESULTS TO OTHER SOURCES
We search air standard values for these materials
respectively and conclude that 3 out of 7 have the values that are less than the standard while the rest of them all get higher pH value than the standard ones except for coffee (pH popper,
According to the thoughtco.com website. the standard value
for lemon is 2.5 while it is 1.5 by using pH Doper and 2 using the for lemon is 2.5 while it it 1.5 by using pH paper and 2 using the
cabbage juice. For the banana, according to H. Patricia it is
5.1 for the standard value and we used pH paper to indicated 5.1 for the standard value and we used pH paper to indicated
it with a number of 6 while it is 6.5 by the cabbage juice. Based
on Meg Campbell, yogurt has a standard value of 6 as we on Meg Campbell, yogurt has a standard value or o as
calculate 4.5 by the pH paper and 3 by the cabbage juice.
Next, mike has a standard value of 6.3 according to Anne. Next, mil has a standard value of 6.3 according to Ane. Marie Helmenstine and our measurement both show it is 7 . For
vinegar, it is 2.9 and we fest it with a result of 2 for both pH
paper and cabbage juice. Then, coffee has a standard value paper and cabbage juice. Inn, coliee has a standard value
of 5.5 as we use cabbage jive to test it with a value of δ and
5 with the pH test paper. Last, according to Samuel Markings the standard value for soda is 8.6 while we get the result of 10 3. SOURCES OF ERROR

Firstly, as we pour oiniereni maternal juices into the beakers, some of them may splash into other beakers which may
potentially causes the result to be inaccurate, In addition
 the solution is ivied which means our result may not be tine
same as we testing with the pure cabbage juice. 4. RECOMMENDATION ON THE ERRORS away from each other and make sure our hands don't touch the other beakers when squashing. Besides, we can use juice
extractor to squash the cabbage so that we can get the purest

1. WAS YOUR HYPOTHESIS CORRECT?

Our hypothesis is correct since the cabbage juice is able to indicate materials that are highly alkali or acid (yogut.sodo, vinegar and lemon), but
doesn't have en accurate measurement on things that are near neutral such as banana and coffee. Besides, if the color of material is too darkit will aoesnt have an accurate measurement on things that are near neutral such as banana and coffee. Besides, if the color of material is too dark in will to
also influence our judgement of its pH value. The density of the cabbage juice is also a potential element that may influence our result. We suggest to also influence our judgement of its pH value. The density of the cabbage juice is also a potential element that may influer
use the juice with higher density by using the blender and avoid the materials with deep color for the future experiments.

Group 3: Measure The Calories of a Metal

Members: Evelyn, Amy

Group 4: Does
 Temperature Affect pH of a Liquid

Members:
 Ruby,
 Max, Sunnie

Does storage temperature affect the pH of liquid?

Discussion As can be seen from the sbove chart, with the

 olso changes. At the same time, we can concluce that the higherthe temperature, the nigner the sidity of the liquid, the temperature, the hifger the scidity of the liquila,
snd the iower the listinity. For example, when orarge juice is at 30 defree C, its

 decresses 0.18 scidity cempared with 30 degree C ond resches the nigheat value in three data. It can be
seen that the PH value also chonges with tre increase of temperature and the PH is more scicic.

Conclusions
 Our typothesis is incorrect. As cen be seen from the Thart, the higher the temperature, the lower velue. So, it should show more sicity. My experiment sccorting to mpotheris. In the experiment, we found that the trend of the Charge trend, we should choose more temperatures st different stages in esch iquid to make the results

 cleare:
Research

How to calcuate pH velue:
 acidic alkaline - neutral

Equation for pH
 of an squecus (weter-based) solution:pH $=-\log [1 /+1$
log is the tase 10 logrithm and $1 \mid+1$ is hydrogen ion concentration in tre units moies per iter[Anne, M.H. concent
2018)

Group 5 Members:

Group 5: Rusting Conditions of Iron Nails

Members:
 Yvonne, Jean, Eva

Rusting condition of Iron nalls

Hypothesis

If nails are only in contact with water or oxygen. Another beaker is in contact with both oxygen and water. Then after resting for a few days, one of the three containers changes. It's because iron nail products rust only when it touches both water and oxygen.

Date=	13.11.2018	14.11.2018	$\mathbf{1 5 . 1 1 . 2 0 1 8}$
no.A(b eaker)	On the first day of the experiment, there was no significant change in the beaker.	The wire inside beaker tumed slightly black.	Iran wire has obvious changes, nust on the wire.

Procedure

Experimental materials: 3 nails, 3 beakers, and water experiment process: Put the three nails into the beaker respectively. No addition to a beaker. Add half a cup of water to a beaker b. Fill a beaker no. C with water. Observe phenomena. Experimental phenomena: no rust is found in a and c, and no rust is found in b. Experimental conclusion: iron will rust when it encounters water and air at the same time.

References

http://www.reference.com/science/couse-iron-rust-3db28acdb079b3cc http://wonderopolis.org/wonder/why-do-some-things-rust http://en.m.wikipedia.org/wiki/Rust

Result : The wire in beaker A is rusty. Beaker B and beaker C did not change significantly.

Group 6:

Most Efficient Electrolyte of H_{2} Production Through Electrolysis

Members:

Lyn and Skyler

The most efficient electrolyte for hytrogen production

$\cos ^{-7}$
NaHCO

through electrolysis

CH
BY: Lyn \& Skyler

DISCIISSIOH

Whore a trond for tydracen produotion
Weotrolytere sosordina to the recearom:
H8OH-124.4cim, CaCl2-97.06sm. NaC1-
 produce the modet hy crocen, pmoh motomes

 in lia' e exporiment
differenof arobably is dirmarsanes or tamparaturs

 and batfery in the wrong pocition and wo
dian toover the top tiantly.
2. Inegouragy of mancuremant and
 A.Numberion or thate: wo only dias a thale ror
 mevile
 focus more on ditalie inke the nubor vira
 morb pran:

Conclusion

Eased on the retult and dieoutsian, it he

 bean proven that NaOH is the most oftioignt eleotrotyto for hydragen proptuaton through

 efleativasese of the probedure stlil nesds to
be limproved, we rsoommend people to ute

 eave a lot or timg rrom it. For furinal
experiment, wa
d ike to explore thow

 to its mite
2018).

Reference

 ntromi: itpusen convenvidepolosce-coalum

 nthot: - Poivinin, M 120171 . Neortance of Hydrogen

How does temperature affect the speed of molecules?

Group 7:
How Does
Temperature Affect Speed of Molecules

Members:
 Sarah,
 Annie, Kua

Sarah Li, Annie Bi, Kua Guo
BLOCK:3

Introduction
The question for our group is how temperature affects molecular motion. We choose this topic because we wants to know the different change of molecules at different temperatures in non-polar and polar liquid and what the reasons are. According to the results of this experiment, we discovered the ink moves faster in hot water, which means that the molecules move faster in hot water and polar and non-polar cannot combined with each other.

Hvoothesis

Through the first experiment, the faster the red ink diffuses in 80 degrees water, the faster the molecule moves. In the second benzene solution experiment, the red ink is insoluble in benzene, the benzene solution is non-polar, By' like solvent like "rule the red ink is polar. In the end, we used "thinlayer chromatography" to verify the speed of molecule movement at different
temperstures. The result is the some as the first experiment Thers is another experime first experiment. There is another experiment confirm our results, to place 1 drop of yellow and blue food coloring into the hot and cold water. And Patti Galvan and Jim Kessler found that The food coloring will spread faster in hot water than in cold. The colors will combine and turn green in the hot water while the colors will remain separate longer in the cold water. This result is as same as the one that our group have. (3)Experiment from Steve Davala has the same result, take the same quality of hot and cold water, pu the some quality of condy, found that the the some quality of candy, found that the candy in hot water disappeared first.Through analysis and induction, it is concluded that the higher the temperature, the faster the molecular movement. (4) we have errors in the experiment, because the price of benzene is high, we only did one experiment.next time, we will prepare enough solutions or change it. And because the temperature is low, the watermay change 2 to 3 degrees.next time, we will keep heating to keep the temperature.
<1 If we put the ink into both hot non-polar and polar solvents, then the speed of red ink point in filter paper diffuse to reach the line will faster than both cold non-polar and polar solvents. This is because the molecules move faster in higher temperature.
<2. lf we point the red ink into both hot water and cold water the speed of red ink diffuse in hot water will faster than ink in cold water

Procedure

1)Pour 50 ml water into esch of the two beaker.Heat to 90 degrees. Measure the temperature of the ambient water, marked as room tempersture.($20-21$ degree) Drop a drop of red ink into the two beskers at the same time. Observe which is the fastest one to dissolve the red Drop a drop of red ink ink
ink
(ili)pour 50 mi benzene solvent into one beaker
Drap a drop of red ink into the beaker. Observe how long does it toke to dissolve the red ink. (III) Cut two fitter poper with the same length and size.

Orsw a dashed line at s distance of 1 om from the end of the fitter poper and drop a drop of red ink over the it Draw a solid line from the locstion of the dotted line Som with penci, and record as the key line. Heat the wster in one of the beaker to 30 degrees. Put the fiter paper into hot water and room tempersture water, but do not make water pass the doshed line Observe the time that the red ink pass the key line at different temperature. *Esch experiment will be doing three times and the average volve should be colculsted.

Results

Materials Alcohol lamp 25 Y \& 1000 L water Red ink $5 Y$ \& fitter paper $10 Y$ benzene70ML \& Thermometer 250 ml Beakers Stopwstch A Dropper

Conclusions

Through this experiment, it was found that molecules

 move slowly in cold water and fast in hot water, so our experimental hypothesis was proved correct. Recommendation:We know that poiar and non-polar are mutually exclusive becsuse when we drop odrop of red ink into os beaker filled with benzene,benzene is non-polsr, woter is polar,but we discovered they are separate from each other, so we con summarize os conclusion from this experiment that is polar and non-polar substances cannot be combined together. Next step of our experiment:
So for, our group has divided the experiment into two ports: the first experiment is the movement speed of red ink in water(HZO) The second experiment was to observe ink in water|H2O). The second experiment was to obs substonce. These two parts makes our experiment more completiy.

Referance

1. Chris Hudson. (2013). Science Fsir

 Project:https://userfiles-secure.edutatorpoges.com/userfiles/Mrhudson/scien Fsir/04-Results Discussion Conclusion.pdf
2. BrinGiToN. (2008). How does temperature affect the speed of molecular
movementinttps://snswers.yohoo.com/question/index? id $=2013052013243$ AAxkupH guccounter $=1$ 3. Patti Galvan and Jim Kessler, 2018
$/ / \mathrm{www}$.middieschooichemistry.com/lessonplans/chspter 1/lesjison2
4.SteveDavals, (2013),

4.SteveDavala,

nttp://www.metrofamilymagozine.com/May-2013/simple-science-Experiment-Molecular-Motion-with-Hest-Changes

Group 8: Removing lodine Stains From Fabric

Members:

Emily, Zoe, Burberry

Feat -now can we remove fodine stains from febric?

References

Name
Emily Uu, Zoe xo, Burbery Ma

?

	Light transmittance	Absorbance
Normal fabric	02.0	1.708
The fabric in water	0.8	1.734
The fabric in laundry	07.1	1.209
The fabric in Na2S2O3	02.0	1.687

Are you bothered about your clothes are soiled by iodine stains, and you do not to how to deal with it? It is really hard to clean, but we have a special way to clean it and very quicchy. When that happens to you, may you wil use laundry detergent or water to clean it, but they can not completely eliminate iodine So we make his to eliminate iodine. In this experiment we prepare to eliminate iocine. In this experiment we prepare Water, laundry detergent and sodium carbonate. The independent variables in this experiment are watier, laundry detergent and sodum calbonatio The dependent variable is how much iodine has been eiliminated by these three matters atier
mixed with water. So let us begin to do this moxed with
experiment.

INTRODUCTION xperiment.

Results

Hypothesis
If put iodine into Na 2 S 203 then the iodine will removed, because it can produce the thing Na2S406 which is no colour.

Materials

Discussion

Group 9: Non-
 Newtonian

Fluid
Viscosity

Members:

Esebella, Alyna, Maria

Time to decide！

＞In tomorrow＇s class you will anonymously（匿名地）
choose two of these to go to the Science Fair！

